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ABSTRACT

A formalism for the power flow vector of a complex composed of a multitude
of one-dimensional dynamic systems has been developed using wave propagation
concepts. Each element in the power flow vector specifies the power flow in a
given dynamic system. In this formalism, the complex is defined in terms of two
diagonal propagator matrices, two terminal position vectors, and two junction
matrices. An element in a propagator matrix describes the manner in which power,
in a specific dynamic system, propagates toward a junction. An element in a
terminal vector defines the terminal position, in a specific dynamic system, at a
junction. A junction is the boundary that defines the couplings among the dynamic
systems at a common terminal vector. An element in a junction matrix defines
either the coupling (transmission action) between two distinct dynamic systems or
the self-coupling (reflection action) at the designated junction. It is shown that the
formalism accounts for the energetics of coupled one-dimensional dynamic
systems. Neglecting cross terms between linear propagation toward one and the
other junctions, one may show that the stored energy density vector is the sum of
the stored energy density vector associated with propagation of power toward one
junction and with that propagating toward the other junction. Under the same
conditions, one may further show that the net power (intensity) vector is the
difference between the power vector associated with power propagation toward one
junction and with that propagating toward the other. Since the energy stored and
the power flow are simply related by a speed of propagation, it is argued that the
stored energy density vector and the net power (intensity) vector are supplemental
quantities.

ADMINISTRATIVE INFORMATION

This work was sponsored in part by the Submarine Technology Block (ND3A) 6.2

Submarine Silencing Task RB 23 C 33. The cognizant program manager is Mr. G. Smith, DTRC

Code 1903.

INTRODUCTION

The equations for the energetics of a complex are derived in a manner that parallels the

derivation of the equation for the linear response of a corresponding complex. The equation for the

linear response of a complex composed of coupled one-dimensional dynamic systems was

previously developed and reported in References 1 through 3. Earlier attempts to utilize wave

concepts to derive the equation for the energetic responses of such complexes were also reported;

• • . , i I I I I ! 1



for example, in References 4 through 6. In this paper further attempts in this utilization are

reported and discussed. The derivation of the equation for the energetics of a complex is still

restricted to coupled one-dimensional dynamic systems. The one dimensionality introduces

considerable simplification. This simplification is used here to explain a number of relationships

that would otherwise be lost in the cumbersomeness of the mathematical manipulations and the

notations that would ensue were one to increase the spatial dimensionality.

ANALYTICAL DEFINITION OF THE COMPLEX

A complex consisting of a number of one-dimensional dynamic systems is depicted in

Figure 1. A dynamic system, the (j)th, is defined in terms of two propagators (xj I x ), two

terminal positions xaj, ani two junction vectors £ayj = {r'ij}; a = r and q; see Figure 2.

The propagators %a. (XjI x' ) define the forward propagation of power in the direction of junction

a from position x to position xj in the (j)th dynamic system were it extrapolated beyond its

boundaries in a manner that would not back-scatter from the extrapolated regions. [The backward

propagation in this process is considered absent.] The terminal positions xoj define the extent of

the dynamic system; see Figure 2, each terminal position is at a junction. A junction is a

"boundary" at which the dynamic systems interact with each other (transmission) and with itself

(reflection): raij, with i j, is the transmission coefficient of power (transmission action) at the

(a)th junction from the (j)th dynamic system into the (i)th dynamic system and I"ajj is the

reflection coefficient of power (reflection action) at the (a)th junction in the (j)th dynamic system.

One may then define the entire complex in terms of the power propagator matrices1

a(, I X,)- =(%.(xj I x3) i , c--randq,(1

1The dependence of quantifies on either the temporal or the frequency variable is not stated
explicitly throughout this paper. The explicit dependence may be readily included, however, at
some increase in definitions and cumbersomeness. Since the inclusion of one form or the other
does not change the general conclusions, it is decided to leave the dependence neuter and inexplicit.
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the terminal position vectors

Aa = {Xaj } , cz=randq (2)

and the power junction matrices

Fa=(Faji) , a=randq (3)

COMPATIBLE DEFINITION OF THE EXTERNAL DRIVES

The external drive need be compatibly defined in terms of powers. The external drive on the

(j)th dynamic system is stated in terms of two input powers: the external drive initiates the power

flow & lteaj (x'j) at position (x 'j) in the direction of junction a; a = r and q, where aj is a unit

vector in this direction; [&j Pj] Bq. The input power vectors may then be defined

TVA ) r QC rea(X') ; Tea(A') = {lreqj(x) }

Q= 8 ji) ; ( 8a p j i)  •(4

DERIVATION OF THE IMPULSE RESPONSE MATRIX OF POWER
AND THE POWER FLOW VECTORS

Assisted by Figure 3 and equations (1) through (4), one may state that

Direct Reverberant (5)

7ra~f [-a(Ax'P) dx' LE(Z) d-' = (dx 18j) 6

or even

a (4) f J (xI) dx' 9 Z e (A')](7)

3



A a

where I I A') is the impulse response matrix of power, and a (A) is the power flow vector

at 2 = {xj I that is directed toward junction a. The quantity a() is the portion of that power

flow vector that is initiated by an injection of external power that is directed toward

junction P. [Note that xa(x) = L(,) + L(X) + 7r(). where Lt(x) is the direct

term and 7(1) + a(x) are the reverberant terms in ia(x); see equation (5). The direct

term !r (A) is the power flow vector that is associated with propagation toward junction a prior

to any interaction with the junctions.] From equation (5), the impulse response matrix of power
A

appears to be impure; (. ') is not explicitly expressed in terms of the three pairs of quantities

and parameters that describe the complex; namely, equations (1) through (3). Cumbersome butA

straightforward manipulations of equation (5), however, makes the purity of ?Ca(,. I i.') explicit.

Such manipulations yield

S+ +
-c (8)

= ( )00(xaI ") ' (9a)

where2

-a -a(10)

From equations (8) through (10), it is clear that the impulse response matrix ( I X') of

power, explicitly stated in equations (8) and (9), is pure. Therefore, the power flow vectors

defined in equations (6) and (7) are properly defined and stated.

2The quantity P may be a temporal (or even a frequency) matrix operator. Its inversion into
and the subsequ nt insertion of Q into the reverb t terms in the equations for the impulse
response matrix, cannot be mad&!'valierly when these equations are to be used.
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ENERGY DENSITY, INTENSITY, AND NET POWER VECTORS

The power flow vector L a(2() may be directly related to the energy density vector ga(x)

and the intensity vector ICa(l) by the following equations:

= (Ca)l !ca(2) ; (c j) (

-a(X) = (Aa) -  1 na(2 ) ; A c' = (A ; ji) (12)

respectively, where CJxis the speed of propagation toward junction cc in the (j)th dynamic system,

and M x is the cross-section facing junction ax in the (j)th dynamic system. The quantities ca(x)

and tC () are the stored energy density vector and the intensity vector, respectively, at the

position vector X. These vectorial quantities are associated with power flow toward junction a.

Although superposition does not strictly hold for energetic (quadratic) quantities,

nonetheless, under certain conditions and averagings, the superposition of these quantities may

substantially hold [7]. Denoting the imposition of such conditions and the application of such

averagings by triangular brackets, one may state the quantity (. (A.)), that relates to the stored

energy vector, in the form

rq - (13)

[cf. equation (11).] Recently the authors derived the equation of the statistical energy analysis

(SEA) using the procedure indicated in equation (13) [8, 9]. Similarly, one may state the quantities

(. (X-)) and (LE (X)) that relate to the intensity vector and the net power flow vector, respectively,

in the forms

WAD =Y S(A- A) ((A'X)- '90x),
r, q - (14)

r, q - (15)
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where

§(x. - x ) = (sign (xaj - xj) 8i5) (16)

[cf. equations (12) and (6), respectively.] It is observed from equations (13) through (15), that

whereas (()) involves the smaion of the modified power flow quantities; one associated with

propagations toward junction a and the other toward junction 0, (IL (X)) and (LE (X)) involve the

subtraction of the modified power flow quantities. The modifications of reference, when relevant,

are stated in equations (11) and (12). Just as information, concerning a function, is complete only

when its symmetric and anti-symmetric forms are on hand, so must one consider the information

of the energetics of a complex grossly complete only when (9(X.)) and either or both (I (X)) and

( (X)), are on hand. Barring the obvious exception, when either Lot (X) -4 0 or 013 (2) - 0,

the supplementarity of (9(X.)) and either or both and (L (.)) is thus suggested. Would

one dare enter an acoustically driven room, without ear protection, merely on the basis that an

intensity meter, on the average, reads zero?

%U
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Fig. 1. A complex consisting of several one-dimensional dynamic systems.
The dynamic systems terminate at two junctions, r and q. The
couplings among the dynamic systems take place in the junctions.

"J "'j

Fig. 2. Model of a typical elementary one-dimensional system.
The essential properties of the dynamic system and the
essential nature of the external input power are indicated.

Aq D

Fig. 3. A collective model of a complex composed of coupled
one-dimensional dynamic systems. The terms in the power
impulse response matrix, the terms in the external input power
vector, the junction matrices, the terminal position vectors, and
the external drive position vector, are indicated.
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